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A simple class C transistor amplifier is usually considered to be a linear electronic system.

It was shown previously in an experiment that when high frequency signals (on the order of
1MHz) were injected into this low frequency amplifier, the non-linearities of the pn junctions
caused period doubling, chaos, and very low frequency oscillations (on the order of 1Hz). In
this paper we present theory and simulations to explain the existence of the low frequency
oscillations.

I. INTRODUCTION

In previous work [1] experiments showed that driving
a simple one transistor audio amplifier, Fig. 1, with a
high frequency (approximately 1MHz) signal could in-
duce chaos, period doubling, and low frequency (on the
order of 1Hz) switching.

Chaos and period doubling in such a system might be
expected based on studies of the diode resonator [2–10],
in which a periodic signal is applied to a circuit consisting
of an inductor, a resistor, and a diode. The inductor
combined with the nonlinear capacitance of the diode
form a non-linear resonant system, which may exhibit
period doubling or chaos.

In our previous experimental work, we were interested
in what sort of non-linear effects might be seen if a low
frequency system containing pn junctions (such as our
amplifier) was subjected to high frequency rf signals.
The rf signals might be accidently produced by nearby
communications systems, or they might be intentionally
beamed at the circuit in an attempt to disrupt the func-

2 RR e

R

T

V

L

C

V

RL

s

C21

in

C1
Rc

FIG. 1: A simple, stable, audio frequency transistor amplifier.
Vs = 15V , R1 = 40.42kΩ, R2 = 204.545kΩ, Rc = 15kΩ,
Re = 3.75kΩ, RL = 1MΩ, C1 = C2 = 25µF , C = 330µF ,
L = 2200µH , and the transistor T is of type 2n929. The
output of the circuit is across the load resistor, RL.
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FIG. 2: The transistor has small variable internal capaci-
tances Cc and Ce that are known to be frequency dependent.

tioning of the circuit. The inductances of the wires of the
circuit combined with the capacitance of the pn junctions
in the transistor formed the non-linear resonant system,
with a resonant frequency on the order of GHz.

The actual rf signals might have frequencies on the or-
der of 1GHz, but systems that can digitize signals fast
enough to study GHz phenomena are still quite expen-
sive, so we added an inductor to the input of the transis-
tor amplifier in order to lower the resonant frequency of
the inductor-pn junction combination.

II. EXPERIMENTAL DESCRIPTION

We consider a simple audio frequency transistor am-
plifier, Fig. 1. The transistor is a 2n929 bipolar tran-
sistor The transistor has variable internal capacitance
(Fig. 2) from a number of mechanisms (i.e., junction ca-
pacitance, diffusion capacitance) with a magnitude of or-
der Co ≈ 10−11F .

This capacitance gives the circuit a natural resonance
near the frequency fo = 1/

√
4π2LCo ≈ 1MHz (n.b. The

inductor L was explicitly added to make the experiment
easier to perform. There are inductances inherent in the
wires and typical values give resonances on the order of
GHz, which makes data collection difficult.). Driving
the circuit with a signal with frequency f near fo causes
the circuit to respond at the driving frequency f and
also exhibits a low frequency switching on the order of
5 to 10Hz. The experimentally determined switching
frequency for a range of driving frequencies and driving
amplitudes appear in Fig 11.
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FIG. 3: A much simpler circuit that exhibits the same behav-
ior as Fig. 1. For the numerical work done on this circuit we
use the parameters Vs = 15V , Rc = 5kΩ, Re = 10kΩ, Co =
20µF , C = 3µF , L = 2000µH , Vin = Vino + VA sin(2πft),
Vino = 2V .

III. THEORY

In order to simplify our analysis, we eliminate cir-
cuit elements which are not necessary for low frequency
switching. Experiments and numerical simulations show
that C1 and C2 are not necessary.

Removing capacitorsC1 and C2 reduces the dimension-
ality of the system without substantially changing the
dynamics of the circuit. This somewhat simpler circuit
(Fig. 3) exhibits similar behavior to the experimental cir-
cuit. At the audio frequencies the circuit is designed for,
the inductor and the capacitances in the transistor are
unimportant. At these low frequencies when the voltage
across the base-emitter junction, Vbe, is below a threshold
value, Vo, the transistor is non-conducting. Note that in
general we define Vab to be the voltage drop from point a
to point b. For the transistor control voltage, Vbe, above
the threshold a small current will flow (at least for a bipo-
lar junction transistor) from the base of the transistor
(point b) to the emitter of the transistor (point e). This
small current from b to e stimulates a much larger current
from the collector (point c) out the emitter. The much
larger collector-emitter current is proportional to Vbe−Vo,
at least for Vbe −Vo small. In this mode of operation the
transistor acts as a voltage valve. For Vbe − Vo ≈ 0 very
little current flows and most of the voltage drop across
the amplification power source, Vs, occurs across the the
collector-base junction (i.e., Vac ≈ 0 and Vcb ≈ Vs − Vino

where Vs is the amplifier power supply voltage and Vino

is the input signal biasing ) whereas for large values of
Vbe − Vo a large current flows and most of the current
drop is across the resistor Rc (i.e., Vac ≈ Vs − Vino and
Vcb ≈ 0).

At the frequencies we consider in this paper all four
reactive elements in the circuit in Fig. 3 are important:
the inductor L, the capacitor C, and the two internal
capacitances of the transistor Cc and Ce. As a result,
the circuit can be described using four ODEs:

dI

dt
=

1

L
(Vin − Vbe − Veg)

dVcb

dt
=

1

Cc
(Vac/Rc − Ic)

dVbe

dt
=

1

Ce
(Vac/Rc + I − Ie) (1)

dVeg

dt
=

1

C
(Vac/Rc − I − Veg/Re)

where Vin = Vino +VA sin(2πft), I is the current through
the inductor, and Ic and Ie are the non-linear currents
which come from an Ebers-Moll description of the tran-
sistor.

Ic = Io[−(e−qVcb/kT − 1) + α(eqVbe/kT − 1)

Ie = Io[(e
qVbe/kT − 1) − α(e−qVcb/kT − 1)

where Io = 10−11, k is Boltzmann’s constant, T is the
temperature in Kelvin, and α = 0.995 is the fraction of
current lost through the base of the transistor.

We now make a number of simplifying assumptions:

• The experimental effect was seen with different
types of transistors, including both bipolar and
FETs. From this we infer that the details of the
nonlinearity of the current function are unimpor-
tant, so we approximate the exponential nonlinear-
ity in the current function with a piece-wise linear
form (as was done for the diode resonator in [7] and
[8]) linearized about the voltage, Vo, at which the
non-linearity becomes important.

• Simulations show that the nonlinear capacitance
is not necessary for the low frequency oscillations,
therefore the type of transistor capacitance is not
important, only the fact that it is present, and its
approximate value, Co.

• The collector-base junction is never driven into a
forward bias so the Vcb contributions to the non-
linear currents are not important. The circuit will
not be driven in such a way that the base-emitter
junction will receive a large reverse bias.

• The leakage of base current, while important for
the proper functioning of a bipolar transistor, is
not important for the FETs. In light of this we use
α = 1.

• The large capacitance of C compared to both the
transistor’s internal capacitance (i.e., Co/C � 1)
and the inductance L (i.e., L/(REC) � 1) means
that the dynamics of Veg are much slower than
those of the other variables. As a result, Veg can be
treated as a constant compared to the other vari-
ables, i.e.,
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dVac

dt
=
d(Vs − Vcb − Vbe − Veg)

dt
≈ −dVcb

dt
− Vbe

dt
. (2)

With these assumptions we rewrite the physical repre-
sentation of the circuit Eqs. (1) in more natural coordi-
nates:

dx1

dφ
= γ[sin(2πφ) − x3 − y]

dx2

dφ
= −δ[x1 + 2x2 − 2κx3H(x3)]

dx3

dφ
= δ[x1 + x2 − κx3H(x3)] (3)

dy

dφ
= ε[λ(x1 + x2) − y − yo]

where x1 = RcI/VA, x2 = Vac/VA, x3 = (Vbe − Vo)/VA,
y = Veg/VA−yo, yo = (Vino −Vo)/VA, φ = ft, γ = Rc

fL , f

is the frequency of the input signal, δ = 1
fRcCo

, ε = 1
fReC ,

λ = Re/Rc, κ = qRcIo

kT exp(qVo/kT ), and H(x) is the
Heavyside step function, which has a value of 0 for x < 0
and 1 for x > 0. For the relevant circuit parameters (see
Fig. 3) all parameters that appear in Eqs. (3) are of order
1, except ε ∼ O(10−3) and κ ∼ O(103).

Numerical integration of Eqs. (3) yields behavior that
is substantially the same as is seen in the experiment.
The variables x1, x2, and x3 are typically periodic in the
drive frequency (i.e., have a period of one in the φ time
parameterization) and are bi-stable. Figure 4(a) shows
x1, x2, and x3 in their high amplitude waveforms and
Fig. 4(b) shows x1, x2, and x3 in their low amplitude
wave forms. These two sets of stable periodic waveforms
that x1, x2, and x3 execute are for the same value of y,
in this case y = 1.15. The waveforms gradually evolve
as y slowly changes until the system switches from one
waveform set to the other.

This switching behavior is captured in Fig. 5 which
shows x2, the normalized voltage across the resistor Rc,
against y strobed once per drive cycle. Figure 5 shows
the low frequency switching between the high amplitude
state and the low amplitude state. In the high ampli-
tude state (shown with large pluses) a large rectified
current flows through Rc and into the transistor collec-
tor. This DC biased current flows through the transistor
and charges capacitor C, increasing y until y = ymax

when the system switches into the low amplitude state
(shown with small crosses). In the low amplitude state
for ymax > y > y∗, x3 is strictly less than zero. As a
result the transistor does not conduct and there is no
longer a rectified current flowing through Rc. Even af-
ter x3 starts making excursions above x3 = 0, as in the
example shown in Fig. 4, the rectified current is much
smaller than in the high amplitude state. With rectifi-
cation effectively stopped throughout the low amplitude
state, time average of x1 and x2 over one drive oscillation
(DC level) approaches zero. As a result, charging stops
and the capacitor C discharges through Re, the resistor

in parallel with C, so y drops. As y nears ymin, the lower
end of its range, the system becomes unstable, causing
the system to switch back into the high amplitude state.
This instability causes the system to switch back into the
high amplitude state in a number of ways, depending on
the input signal frequency. The system may switch di-
rectly from the period one low amplitude state to the high
amplitude state, it may first pass into a period doubling
cascade and become chaotic before switching to the high
amplitude state, or the system may even pass through
a period doubling cascade and then through an inverse
period doubling cascade before switching to the high am-
plitude state.

The low frequency switching is part of a hierarchy of
time scales relevant to this system. At the fastest time
scales (times of order 1/κ � 1) there is the reaction of
the system to the transistor turn on, (i.e., the non-linear
currents Ic and Ie switch on.) There is an intermediate
time scale (times of order 1) associated with the driv-
ing frequency. At the slowest time scales (times of order
1/ε � 1) is the variation in the slow variable y, which
is responsible for the slow switching observed in this sys-
tem.

IV. SINGULAR PERTURBATION THEORY

This hierarchy of time scales makes singular perturba-
tion theory (SPT) [11] an attractive approach. In SPT
one makes use of a small parameter to treat the fast
and slow evolution of a system separately. One does this
by using two different parameterizations of time, t and
τ = εt. Consider an example of the van der Pol oscillator
[11] in the t parameterization

dx

dt
= x− x3/3 − y

dy

dt
= εx (4)

or equivalently in the τ parameterization

dx

dτ
=

1

ε
(x− x3/3 − y)

dy

dτ
= x (5)

where ε � 1. The van der Pol oscillator, Eq. (4) is a
relaxation oscillator. Its cycle consists of four pieces: a
slow evolution of x and y, a rapid, nearly discontinuous
jump in x while y stays roughly constant, another slow
evolution of x and y, and one final rapid jump in x with
y roughly constant. These four pieces of the cycle can
be neatly split from each other and, in the limit ε → 0
are described by two sets of equations. The fast evolving
pieces are governed by a “fast” set of equations (from
the t parameterization of time) and the slowly evolving
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FIG. 4: Numerical integration of Eq. (3) over one period of the drive function. Set (a) is from the high amplitude state and
shows the high amplitude wave forms of x1, x2, and x3. Set (b) is from the low amplitude state and shows the low amplitude
wave forms of x1, x2, and x3. Both sets are for the same value of y = 1.15.
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FIG. 5: Numerical integration of Eq. (3) over one slow switch-
ing cycle strobed once per drive cycle. The system evolves
along the orbit in a clockwise sense. Initially in the low am-
plitude state, shown with small ×s, the system switches to the
high amplitude state, shown with large +s, at y = ymin and
switches from the high amplitude state to the low amplitude
state at y = ymax. Upon re-entering the low amplitude state
the transistor is strictly off from y = ymax down to y = y∗.

pieces are governed by a “slow” set of equations (from
the τ parameterization of time). The fast equations,

dx

dt
= x− x3/3 − y

dy

dt
= 0 (6)

describe the rapid evolution to the slow manifold, x −
x3/3 − y = f(x, y) = 0. Once the system has reached
the f(x, y) = 0 manifold there is a strong (1/ε strong)

restoring force on x that keeps the system on the 0 =
f(x, y) manifold. Because of this the system follows the
singular slow equations

0 = x− x3/3 − y

dy

dτ
= x (7)

along the slow manifold until dy
dτ = x forces the system

off of the slow manifold. At that point the system once
again follows Eqs. (6) to find its way to a different piece
of the slow manifold.

These two limits for ε→ 0, Eqs. (6) and 7, govern the
zeroth order SPT solution fragments. The entire zeroth
order solution for an entire relaxation cycle is found by
linking together the fast and slow pieces. Singular per-
turbation theory also allows refinements to the zeroth
order solution in higher orders of ε to be found, at least
in principle.

V. SPT APPLIED TO TRANSISTOR

EQUATIONS

Ideally we would like to find the fast equations and
slow equations for Eqs. (3). This would provide the slow
manifold that the system spends most of its time evolv-
ing along and would allow us to understand when the
system will leave one branch of the slow manifold (the
high amplitude state) and move to the other branch of
the slow manifold (the low amplitude state), and when it
will return to the first branch of the manifold (the high
amplitude state). There is, however, a complication. In
the case of the van der Pol oscillator the long time solu-
tion of the fast equations, Eqs. (6), is a stable fixed point.
But the fast equations for Eqs. (3) are
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dx1

dφ
= γ[sin(2πφ) − x3 − y]

dx2

dφ
= −δ[x1 + 2x2 − 2κx3H(x3)]

dx3

dφ
= δ[x1 + x2 − κx3H(x3)] (8)

dy

dφ
= 0

whose long time limit solution is usually a stable period
one limit cycle. (As previously noted, near the transition
from the low amplitude state branch of the slow manifold
the solution may, for some parameter values, go through
a period doubling cascade to chaos. The low frequency
switching does not depend on period doubling.)

We therefore would like to find the slow equations for
the period one average of Eqs. (3) which would give the
slow manifold for the period one limit cycle. However the
slow equations for the period one average of Eqs. (3) are

0 = γ[− < x3 > − < y >]

0 = −δ[< x1 > +2 < x2 > −2κ < x3H(x3) >]

0 = δ[< x1 > + < x2 > −κ < x3H(x3) >] (9)

d < y >

dψ
= λ(< x1 > + < x2 >)− < y > −yo

where ψ = εφ and < z >=
∫ φ+1

φ
zdφ/1 is the average of

z over one drive cycle. Solving for the averages gives

< x1 > = 0

< x2 > = κ < x3H(x3) >

< x3 > = − < y > (10)

d < y >

dψ
= κλ < x3H(x3) > − < y > −yo

which is not a closed set of equations. To find the average
< x3H(x3) > one must go back to Eqs. (8) and find
the solution to the limit cycle and from that solution
calculate the average < x3H(x3) >.

Recall that there are not just two, but rather three
time scales in this problem. Equations (8) are the fast
equations with respect to the switching time parameter-
ization ψ = εφ, but they are slow with respect to the
transistor turn on. To see this first we rescale x3, which
is small in the on state, X3 = κx3 (recall κ � 1). This
gives us the slow parameterization with respect to the
turn on time

dx1

dφ
= γ[sin(2πφ) −X3/κ− y]

dx2

dφ
= −δ[x1 + 2x2 − 2X3]

1

κ

dX3

dφ
= δ[x1 + x2 −X3] (11)

dy

dφ
= 0

If we take the slow limit with respect to the transistor
turn on time (i.e., κ→ ∞) we find

dx1

dφ
= γ[sin(2πφ) −X3/κ− y]

dx2

dφ
= −δ[x1 + 2x2 − 2X3]

0 = δ[x1 + x2 −X3] (12)

dy

dφ
= 0

There is also the time parameterization which is fast
with respect to the transistor turn on ξ = φκ

dx1

dξ
=

1

κ
γ[sin(2πφ) −X3/κ− y]

dx2

dξ
= − 1

κ
δ[x1 + 2x2 − 2X3]

dX3

dφ
= δ[x1 + x2 −X3] (13)

dy

dφ
= 0

Taking the fast limit (κ → ∞) we have

dx1

dξ
= 0

dx2

dξ
= 0

dX3

dξ
= δ[x1 + x2 −X3] (14)

dy

dξ
= 0

So that in the fast limit, only X3 evolves and has the
solution

X3(ξ) = (x1 + x2)(1 − e−δ(ξ−ξo)) (15)

where ξo is the time at which the transistor turns on (i.e.,
X3(ξo) = 0). And x3 in terms of φ is

x3(φ) = (
x1 + x2

κ
)(1 − e−κδ(φ−φo)). (16)
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Since κδ � 1 the time required for transistor control
variable, x3, to jump from the value x3 = 0 to x3 =
x1+x2

κ is exceedingly small and we can reasonably treat
the jump in x3 at the transistor turn on as discontinuous.

The slow limit just described only exists when κ is
present in the equations, that is when the transistor is
on. When the transistor is off κ falls out of the problem
and we must use Eqs. (8). We therefore have two slow
branches of Eqs. (8) with respect to the transistor turn
on time, namely the On branch for which H(x3) = 1:

dx1

dφ
= γ[sin(2πφ) − (x1 + x2)/κ− y]

dx2

dφ
= δx1

x3 = (x1 + x2)/κ (17)

dy

dφ
= 0

and the Off branch for which H(x3) = 0:

dx1

dφ
= γ[sin(2πφ) − x3 − y]

dx2

dφ
= −δ(x1 + 2x2)

dx3

dφ
= δ(x1 + x2) (18)

dy

dφ
= 0

The On and Off branches, Eqs. (17) and (18), are linear
and can be readily solved. The solution on each branch
is composed of a transient piece coming from the au-
tonomous equation and a particular solution which is
non-transient. (Recall for a driven harmonic oscillator
d2x
dt2 − 2β dx

dt + x = F (x, t) the autonomous solution is the

solution to d2x
dt2 − 2β dx

dt + x = 0 and has two constants
of integration. The particular solution is a solution to
d2x
dt2 − 2β dx

dt + x = F (x, t) without any constants of inte-
gration. For β 6= 0 and long times the autonomous solu-
tion decays to 0.) Both are important for the long time
behavior of the system because of the repetitive switching
back and forth between the On and Off branches. The
fragments of the period one oscillation from the On and
Off branches of the manifold that is slow compared to
the transistor turn on time can then be pieced together
and solved subject to the following two conditions: that
x1 and x2 are continuous at each junction (i.e., both the
On to Off and Off to On junctions) (as was done for the
diode resonator in [7] and [8]) and x3 is continuous at the
junction from Off to On.

Finding period one solutions with one piece each from
the On and Off branches is sufficiently complicated as to
require a numerical solution. We do this by enforcing the
five continuity conditions at two undetermined values of

φ, φo and φ1, and then numerically solve for φo and φ1

such that transistor control variable, x3 = 0, at the tran-
sistor turn on and turn off. Within such a scheme finding
values for φo and φ1 is tantamount to finding a potential
period one solution. In searching for period one solutions
with one piece from the On branch and one from the Off
branch, we find a very limited number of solutions. The
stable solutions correspond to the period one limit cycles
of the large amplitude and low amplitude states. Ex-
amples for x1, x2, and x3 in both states with y = 1.15
are shown in Fig. 6. The agreement between these wave-
forms and the numerically integrated waveforms of Fig. 4
is exceptional.

When the low amplitude state or high amplitude state
consists of only period one oscillations we can say a bit
about the destruction of that state near the switching
point. Numerical searches of the solution space for pe-
riod one oscillations show that for y sufficiently close to
the switching point (ymin or ymax as appropriate) there
are two solutions ((a) and (b)) with values of φo and φ1

(φ
(a)
o , φ

(a)
1 and φ

(b))
o , φ

(b)
1 respectively) near each other.

As y approaches the switching point the two solutions

converge (i.e., φ
(a)
o −φ(b))

o → 0 and φ
(a)
1 −φ(b))

1 → 0). For
y closer to the switching point than this convergence our
numerical search fails to find a nearby solution.

If the circuit parameters are such that the system
passes through a period doubling cascade before switch-
ing from the low amplitude state to the high amplitude
state, then our period one analysis of the low amplitude
state breaks down. The period doubling cascade to chaos
is typically entered when the period one solution for the
low amplitude state is suddenly destroyed. This state is
destroyed when a second local maximum in x3 pushes up
through the transistor turn on value. At this point this
formal solution to the period one oscillation is no longer
valid because the Off branch solution passes from the Off
region into the On region and back into the Off region
before it connects with the On region that is assumed to
be there.

VI. RANGE AND SWITCHING FREQUENCY

In the previous section we constructed period one or-
bits for the system using one On and one Off branch
of the manifold that is slow with respect to the transis-
tor turn on time. Using the understanding gained will
allow us to estimate the frequency of the switching, fs

as a function of frequency f and driving amplitude VA.
First we must search for the values of y at which each of
the branches of the slowest manifold, the manifold that
determines the low frequency switching, cease to exist.
Doing so allows us to determine ymin and ymax directly
from the analysis; ymin is the value of y at which the low
amplitude branch ceases to exist and ymax is the value
of y at which the high amplitude branch ceases to exist.
We can also determine y∗, in the low amplitude state the
transistor remains strictly off over the interval (y∗, ymax)



7

-10
-8
-6
-4
-2
 0
 2

11/20

x 3

φ

-20

 0

 20

 40

 60

11/20

x 2

φ

-8

-4

 0

 4

 8

11/20

x 1

φ

-20

 0

 20

 40

 60

11/20

x 2

φ

-10
-8
-6
-4
-2
 0
 2

11/20

x 3

φ

-8

-4

 0

 4

 8

11/20

x 1
φ

(a)

(b)

FIG. 6: Solutions for x1, x2, and x3 in the (a) large amplitude state and (b) low amplitude state are found by piecing together
an On state (solid line) with an Off state (dashed line) and demanding that the resulting wave form be periodic in the drive
frequency. The agreement between these waveforms and the numerically integrated waveforms of Fig. 4 is exceptional.
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√
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and, as a result, the particular solution (as opposed to
the autonomous solution) is the dominant. We therefore
define y∗ as the largest value of y at which the partic-
ular solution of x3 is tangent to the line x3 = 0. Since
the parameters of Eqs. (17) and (18) depend on f but
not VA, the search for ymin, ymax, and y∗ is independent
of VA and need only be done once for each frequency.
The results of this search appear in Table 1 and will be
discussed shortly.

Figure 7 shows the length of the interval (ymin, ymax)
found by numerical integration of Eqs. (3). Interval
length is only displayed for parameter values for which
the system switched periodically. There are two distinct
bands of switching behavior in this graph: band 1 is
present for f/fo < 1 with a large variation in y, and

band 2 tends to occur at higher frequency and for which
the variation in y is smaller. These two bands arise from
qualitatively different behavior. In band 1 the low and
high amplitude branches of the slow manifold are both
period one, whereas in band 2 the high amplitude branch
is period two. This puts a full discussion of band 2 out
of the realm of the analysis in this paper.

There are frequencies for which both bands are present
for the same frequency but different values of VA. At
these frequencies the high amplitude branch of band 1 is
also the low amplitude branch of band 2.

Table 1 lists the range of (ymin, ymax) from numerical
simulation of Eqs. (3) as well as the range found using
the above analysis. Although our analysis fails to detect
band 2 the agreement between numerical simulations and
our analysis is quite good for band 1. Our analysis pro-
vides an upper bound for ymin and a lower bound for
ymax, the switch from low amplitude branch to high am-
plitude branch (and vice versa) will not happen before the
low amplitude branch becomes unstable but the system
may linger near before switching to the high amplitude
branch. In practice the system does not linger long, and
we note from Table 1 that as f/fo → 1 the values of ymin

and ymax from the simulation approach the bound set by
our analysis.

In addition to the range over which y varies we need
to know how quickly y varies. Recall from Eqs. (10)
that it is necessary to compute λκ < x3H(x3) >= λ <
(x1 + x2)H(x3) >, which is proportional to the current
that flows through the transistor and into the capaci-
tor C while the transistor is on. Instead of computing
λκ < x3H(x3) > at a dense set of points along the in-
terval (ymin, ymax), we calculate λκ < x3H(x3) > at a
few points ( ymin, (ymax + ymin)/2, and ymax for the
high amplitude state, and only at ymin for the low am-
plitude state because < x3H(x3) >= 0 over the interval
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TABLE I: A comparison of the range of (ymin, ymax) from
numerical simulation to the range found using the above anal-
ysis. Also the value of κλ < x3H(x3) > at three values of y
where ymid = ymin+ymax

2
. For reference yo ranges from 3 to

30.

Frequency Simulation Analysis λκ < x3H(x3) >
f (kHz) (ymin, ymax) (ymin, ymax) at (ymin, ymid, ymax)

150 (0.83, 2.52) (0.96, 2.19) (204, 282, 310)
200 (0.90, 2.72) (0.98, 2.54) (92.0, 122.6, 145.8)
250 (0.83, 2.91) (0.96, 2.80) (48.8, 72.2, 85.2)
300 (0.93, 3.11) (0.93, 3.04) (28.0, 42.4, 49.4)

(0.52, 1.09)
350 (1.23, 3.34) (1.23, 3.30) (19.7, 26.8, 29.4)

(0.54, 1.14)
400 (1.66, 3.60) (1.67, 3.58) (13.9, 16.9, 16.4)

(0.55, 1.18)
450 (2.33, 3.93) (2.34, 3.93) (9.4, 10.2, 9.4)

(0.52, 1.21)
500 (0.51, 1.22) (−) (−)
550 (0.48, 1.22) (−) (−)
600 (0.51, 1.22) (−) (−)
650 (0.53, 1.20) (−) (−)
700 (0.54, 1.17) (−) (−)
750 (0.54, 1.12) (−) (−)

(y∗, ymax)) and linearly interpolate in between.
Our estimates of λκ < x3H(x3) >, ymin, ymax, and

y∗ allow us to integrate the < y > equation of Eqs. (10)
(i.e., the one drive cycle average equation for y) over one
switching period. We break the integration up into the
four regions of Fig. 8. The system evolves around the
orbit in Fig. 8 a clockwise sense (i.e., it starts at ymax

in region 1 and then at y∗ passes into region 2, etc.).
Integrating the < y > equation of Eqs. (10) and inverting
yields the time the system spends in region i:

∆φi =
1

ε(λmi − 1)
ln(

yei + ỹoi

ysi + ỹoi
) (19)

where ∆φi is the time spent in region i, ysi is the value
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FIG. 8: The four regions over which the integration has been
broken to find the switching frequency, fs. The system goes
around the orbit in a clockwise rotation.
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FIG. 9: The normalized switching frequency, Fs = τRCfs =
ReCfs, as determined from the above analysis. The switching
system has a natural frequency fo = 1/

√
4π2L2Co. Only

band 1 appears because our analysis does not apply to band
2.

of y at the start of the region, yei is the value of y at
the end of the region, ỹoi = λbi−yo

λmi−1 , and the linearization

of λκ < x3H(x3) > has parameters mi and bi such that
miy + bi ≈ λκ < x3H(x3) > in region i. For example,
in region 1 ys1 = ymax, ye1 = y∗, m1 = b1 = 0, and
ỹo1 = −yo. Summing the time contribution from all four
regions yields our estimate of the slow switching period
Ts and the switching frequency fs = 1/Ts. In Fig. 9 we
present the normalized switching frequency, Fs = τRCfs

where τRC = ReC, for a range of fs and VAs.
Notice that for a fixed value of f , some values of VA

have an estimate for Fs and others there is none. For
those that do not, either the value of κλ < x3H(x3) >
at ymin on the high amplitude branch was so small that
< y > would not grow (i.e., κλ < x3H(x3) > |at y=ymin

−
ymin − yo < 0), or the high amplitude branch became
stable (i.e., κλ < x3H(x3) > |at y=ymin

− ymin − yo > 0
but either κλ < x3H(x3) > |at y=yh

− yh − yo < 0 or
κλ < x3H(x3) > |at y=ymax

− ymax − yo < 0). Each of
these estimates is for a band 1 fs. Band 2 oscillations
are possible in regions where band 1 oscillations are not
because the period two high amplitude branch in band 2
has a large enough DC bias to charge C, even at lower
values of VA when the period one high amplitude branch
cannot.

We now wish to compare our results to those of nu-
merical integration of the whole system. Towards this
end we must calculate the switching frequency, fs, from
the numerical integration of Eqs. (1). From the time
series we find the times of each maxima in the vari-
able y and record the average interval between maxima,
< Tint >, when the standard deviation in the intervals
is less than < Tint > /4. This is to exclude parame-
ter values for which the behavior is non-periodic in na-
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FIG. 10: The normalized switching frequency, Fs, as deduced
from numerical simulations by the technique described in the
text. The switching system has a natural frequency fo =
1/

√
4π2L2Co.

ture. This excludes some data for low frequencies and
larger driving amplitudes (f/fo ≤ 0.4, VA > 0.25) that
is closer to bursting in behavior. The record of this for a
range of fs around the natural frequency of the system,
fo = 1/

√
4π2L2Co, and a range of driving amplitudes

VAs appears in Fig. 10. (The natural frequency depends
on 2Co instead of Co because the internal capacitors are
parallel, and so their capacitances add.)

Within band 1 the agreement is quite good for higher
driving frequencies. At lower driving frequencies the
analysis suggests that there is switching behavior where
the numerical simulation does not. If one consults Table
1, one can see that as f decreases the λκ < x3H(x3) >
becomes large. The SPT analysis is predicated on as-

sumption that d<y>
dφ is much less than

dxj

dφ where j = 1,

2, and 3, which may not be the case if λκ < x3H(x3) >
is becoming large.

By considering the normalized switching frequency, Fs,
instead of fs we are able to compare our analysis and nu-
merical integration with the results of the experimental
work in [1] which are reproduced in Fig. 11. We chose a
smaller value of τRC (recall that τRC = ReC) for the nu-
merical integration so that the integration could be done
in a reasonable amount of time. For the experimental cir-
cuit τRC ≈ 1.24, for the numerical work the τRC = 0.03,
and for the analytical work no assumption was necessary
(from Eq. (19) fs is proportional to ε = 1

fReC and Fs is

proportional to ετRC = 1/f).
There are several aspects of the experimental results

from the circuit in Fig. 1 that are accounted for in the
numerical integration and analysis of the simpler circuit
in Fig. 3. The experimental results in Fig. 11 show two
bands, one on either side of f/fo = 1. This is the same
basic structure found in the numerical simulation. With
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FIG. 11: The normalized switching frequency, Fs, from the
experiment in [1] where fo ≈ 693kHz.

regard to the analysis we note that band 1 of the analysis
extends over to and no further than f/fo = 0.8, as is
also the case for band 1 of the experimental results in
Fig. 11. With regard to the switching frequencies, note
that the majority of the values for Fs from our analysis
and numerical integration fall within the same range of
values as those found in the experiment.

VII. CONCLUSION

We have shown that the low frequency switching in
a class C amplifier, due to a modest amplitude signal
at a frequency higher than the circuit was designed to
operate at, can be understood using a singular pertur-
bation analysis. In particular, by analyzing the high fre-
quency (input signal frequency) response of the system
we have been able to estimate the frequency of the slow
behavior of the system. We also are able to predict one
band of driving frequencies and amplitudes over which
the slow behavior occurs. We expect that the techniques
described in this paper could be extended to find the sec-
ond observed band of driving frequencies and amplitudes
over which the slow behavior occurs.
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